SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

SYLLABUS

For

B. Tech in Electronics and Communication Engineering

Fourth Year

(Seventh Semester to Eighth Semester)

2017

Rukmini Knowledge Park,
Kattigenahalli, Yelahanka, Bangalore - 560 064
Phone No: +91-080-66226622, Fax: 080-28478539

www.reva.edu.in
B. Tech in Electronics and Communication Engineering

Scheme of Instruction:

Scheme for VII Semester

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTEC15F7100</td>
<td>Information Theory and Coding</td>
<td>HC</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>BTEC15F7200</td>
<td>Computer Communication Networks</td>
<td>HC</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BTEC15F73XX</td>
<td>Soft Core 4(SC4)</td>
<td>SC</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTEC15F74XX</td>
<td>Soft Core 5(SC5)</td>
<td>SC</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BTEC15F75XX</td>
<td>Soft Core 6(SC6)</td>
<td>SC</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BTEC15F76XX</td>
<td>Open Elective</td>
<td>OE</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>BTEC15F7700</td>
<td>Computer Communication Networks Lab</td>
<td>HC</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>BTEC15F7800</td>
<td>Embedded Systems Design Lab</td>
<td>HC</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL CREDITS 24</td>
</tr>
</tbody>
</table>

Scheme for VIII Semester

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTEC15F8100</td>
<td>Wireless Communication and Networking</td>
<td>HC</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BTEC15F82XX</td>
<td>Soft Core 7(SC7)</td>
<td>SC</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>BTEC15F83XX</td>
<td>Soft Core 8(SC8)</td>
<td>SC</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTEC15F8400</td>
<td>Major Project</td>
<td>HC</td>
<td></td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL CREDITS 22</td>
</tr>
<tr>
<td>Sl.No.</td>
<td>Course code</td>
<td>Title of the Course</td>
<td>Types of course (HC/SC/OE)</td>
<td>Credit Pattern & Credit Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTEC15F7310</td>
<td>Coded Modulation Techniques</td>
<td>SC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTEC15F7320</td>
<td>Biomedical Signal Processing</td>
<td>SC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTEC15F7330</td>
<td>Embedded Systems</td>
<td>SC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTEC15F7340</td>
<td>Virtualization & Cloud Computing</td>
<td>SC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BTEC15F7410</td>
<td>Satellite Communication</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7420</td>
<td>Adaptive Filters</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7430</td>
<td>Web Programming</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7440</td>
<td>SOC Design</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7450</td>
<td>Real Time Systems</td>
<td>SC</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BTEC15F7510</td>
<td>ASIC Design</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7520</td>
<td>Digital Signal Compression</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7530</td>
<td>Parallel Processing</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEC15F7540</td>
<td>Pervasive & Ubiquitous Computing</td>
<td>SC</td>
<td>3</td>
</tr>
</tbody>
</table>
SC7

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BTEC15F8210</td>
<td>Mobile Adhoc& Sensor Networks</td>
<td>SC</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>3</td>
<td>BTEC15F8220</td>
<td>Real Time DSP</td>
<td>SC</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>4</td>
<td>BTEC15F8230</td>
<td>MEMS Technology</td>
<td>SC</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>5</td>
<td>BTEC15F8240</td>
<td>Device Driver Programming</td>
<td>SC</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>6</td>
<td>BTEC15F8250</td>
<td>Grid Computing</td>
<td>SC</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>7</td>
<td>BTEC15F8260</td>
<td>Multimedia communications and Networks</td>
<td>SC</td>
<td>3 1 0 4</td>
</tr>
</tbody>
</table>

SC8

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTEC15F8310</td>
<td>Analog Mixed Mode VLSI</td>
<td>SC</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>2</td>
<td>BTEC15F8320</td>
<td>Digital Audio & Video Broadcasting Systems</td>
<td>SC</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>4</td>
<td>BTEC15F8330</td>
<td>Automotive Electronic Systems</td>
<td>SC</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>5</td>
<td>BTEC15F8340</td>
<td>Big Data Analytics</td>
<td>SC</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>6</td>
<td>BTEC15F8350</td>
<td>Cryptography and Network Security</td>
<td>SC</td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

Open Electives (OE)

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Title of the Course</th>
<th>Types of course (HC/SC/OE)</th>
<th>Credit Pattern & Credit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTEC15F7610</td>
<td>Robotics & Automation</td>
<td>OE</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>2</td>
<td>BTEC15F7620</td>
<td>Neural Networks and Fuzzy Logic</td>
<td>OE</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>3</td>
<td>BTEC15F7630</td>
<td>MEMS</td>
<td>OE</td>
<td>3 1 0 4</td>
</tr>
</tbody>
</table>

HC = 76% SC=22% OE=2%
Detailed Syllabus

Semester VII

<table>
<thead>
<tr>
<th>BTEC15F7100</th>
<th>Information Theory and Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Duration: 14 Wks

Prerequisites
Digital Communication, Fourier analysis of Signals and systems, Probability Theory and Bayesian Inference.

Course Objectives:
- 1. To equip students with the fundamental concept of information theory and entropy.
- 2. Understand various source coding techniques.
- 3. To familiarize with the reliability of data transmission using error-control coding techniques,
- 4. To build procedures for designing efficient coding schemes for controlling various types of errors in digital communication system.

Course Outcomes:

Upon completion of this course, students will be able to:

- 1. Calculate the information content of dependent and independent sequences. (a,e,g)
- 2. Compute the efficiency and redundancy of information using various source encoding methods.(a,e,g)
- 3. Apply linear block codes and binary cyclic codes for error detection and correction. (a,e,c)
- 4. Apply convolution codes for encoding.(a,e,c)

Course Content:

Unit-1: Fundamentals of Information Theory

Introduction: Historical Background, the Communication Process,

Information Theory: Measure of Information, Information content of a message, Average information content of symbols in long independent sequences, Properties of Entropy, Average information content of symbols in long dependent sequences, Markoff statistical model for information sources, Entropy and Information rate of Markoff Sources.

Unit-2: Source Coding

Source coding theorem, Prefix coding- Kraft-McMillan inequality theorem, Huffman coding-minimum and maximum variance, Discrete memory less channels-Binary symmetric channel, Mutual information, Properties of mutual information, Shannon-Hartley theorem and its implications, Rate of information Transmission over a Discrete channel.
Unit-3: Linear Block Codes and Binary Cyclic codes

Introduction, Examples of error control coding, Methods of controlling errors, Types of errors, types of codes, Linear Block Codes (LBC): Matrix description of LBC, Error detection and Correction capabilities of Linear Block Codes, single error correcting hamming codes, Table Lookup decoding using the standard array.

Binary Cyclic codes: Algebraic structure of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome Calculation, Error detection and error correction.

Unit-4: Convolutional Codes and Special Codes

Convolutional encoder, Time-Domain Approach, Transform-Domain approach, Code tree, State diagram, Trellis diagram. Special Codes: Cyclic Redundancy Check Codes, Golay codes, Bose-Chaudhuri-Hocquenqhem (BCH) Codes, Reed-Solomon Codes Viterbi decoding.

Text Books:

BTEC15F7200

<table>
<thead>
<tr>
<th>Duration:14 Wks</th>
<th>Computer Communication Networks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
Digital Communication, C and C++

Course Objectives:
1. Build an understanding of the fundamental concepts and the underlying basic principles of computer communication networks through the discussion on existing protocols and standards.
2. Familiarize the student with the basic taxonomy and terminology of the computer networking.
3. To understand OSI and TCP/IP layered models with Internet perspective.
4. Learn about data link layer protocols, routing protocols, transport layer and application layer protocols.
5. Introduction to analysis of computer and communication networks through understanding the network layered architecture and the protocol stack by conducting simulation activities.

Course Outcomes:
On completion of this course the student will be able to:
1. Understand the fundamentals of data communication and communication networks in terms of OSI and TCP/IP perspective. (a, d, e)
2. Design and analyze data transmission protocols and data link and routing algorithm.
 (a, b, e)
3. Appreciate and interpret various protocols in transport layer (a, b, e)
4. Summarize application layer protocols. (a, b, e)
5. Apply the principles of data communication and communication network techniques to
 design and evaluate new protocols(a, b, e)
6. Discuss major trends in industry and current research activities within the discipline.
 (a, e)

Course Content:

Unit-1. Introduction to Data Communication and Networking.
Addressing of TCP/IP Model. Framing, Flow and Error Control, Protocols: Noiseless channels and noisy channels, HDLC.

Unit-2. Multiple Access & LANs.
Random access, Controlled access, Channelization. Wired LAN, Ethernet, IEEE standards,
Standard Ethernet. Changes in the standards, Fast Ethernet, Gigabit Ethernet, Wireless LAN IEEE 802.11

Unit-4. Transport layer & Application Layer.
Process to Process Delivery, UDP, TCP, Remote Logging, Electronic Mail and File Transfer,
WWW, HTTP.

TEXT BOOK:

REFERENCE BOOKS:
Prerequisites

Digital Signal processing, Communication Systems, Analog and Digital communications, Information Theory and coding

Course Objectives:

1. To provide an understanding of advanced coded Modulation technique in the state of art communication systems.
2. To provide and understanding of the effective utilization of the power and Bandwidth
3. To have an understanding of the combination of coding and Modulation in effective control of Bandwidth
4. To provide a comprehensive look at the challenges in Engineering problems to provide an effective and efficient solution

Course Outcomes:

1. To determine various impairments of the communication systems using conventional modulation schemes.(a,b,c)
2. Determine the right combination of coding and modulation technique taking into account the need for conservation of Bandwidth and BER at optimum Power level.(a,b,e,c)
3. Apply the signal processing Techniques to quantify the outcome of combined modulation and coding schemes. (a,b,c,k)
4. To determine the final characteristics of the communication systems (a,b,c)
5. To derive holistic view of the communication systems performance with different combination of Modulation and coding Techniques(a,b,c,k)

Course Content:

Unit -1 Introduction to Modulation coding [11]

Introduction – Role of modulation and coding in Wireless communication – Performance parameters – Power & Bandwidth efficient schemes – Advantages of Modulation and coding

Unit-2: Principles of Modulation [10]

Unit-3: Multipath

Multipath and its effects – Multipath countermeasures – Coded systems on the multipath channels;

Unit-4: OFDM

Text Books:

<table>
<thead>
<tr>
<th>BTEC15F7320</th>
<th>Biomedical Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Duration :14 Wks</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites

Signals & Systems, Digital Signal Processing, Linear Algebra,

Course Objectives:

1. Identify the application of the main signal processing tools to the analysis of biomedical signals.
2. Describe how clinically relevant information can be extracted from these signals.
3. Relate advanced signal processing for uni and multi-modal medical signals.
4. Discuss advanced signal processing for multidimensional medical signals.
5. Interpret and analyse medical signals from a set of specific medical applications.
7. Estimate unique segments or regions in medical signals an - images using automatic signal processing methods for classification.

Course Outcomes:

1. Apply advanced signal processing techniques for uni and multi-modal medical signals.(k,g,d)
2. Apply statistical and adaptive signal modelling for multidimensional medical signals.(a, c, e)
3. Interpret and analyse medical signals from a set of specific medical applications(a, b, c)
4. Define and apply signal processing methods for removal of artefacts in medical signals (d, c)
5. Illustrate unique segments or regions in medical signals an - images using automatic signal processing methods for classification (a, b)
6. Explain Smear signal processing methods for characterization of physiological and pathological phenomena (g, f)

Course Content:

Unit-1: Introduction to Biomedical Signals
Nature of Biomedical Signals, Examples of Biomedical Signals (ENG, EMG, ECG, EEG, ERP, EGG, PCG, CP, VMG, VAG), Objectives of Biomedical Signal Analysis, Difficulties in Biomedical Signal Analysis, Computer aided Diagnosis.

Unit-2: Electrocardiography
Basic Electrocardiography, ECG lead systems, ECG Signal characteristics, ECG QRS Detection, ECG Analysis Systems.

Unit-3: Neurological Signal Processing
The Brain and its potentials, The Electrophysiological Origin of Brain Waves, EEG signal and its characteristics, EEG Analysis, Linear Prediction Theory, The AR method, Recursive Estimation of AR Parameters,

Unit-4: Sleep EEG
Data Acquisition and Classification of sleep stages, The Markov Model and Markov Chains, Dynamics of Sleep-Wake Transitions, Hypnogram Model parameters, Event History Analysis for modeling Sleep

Text Books:
1. RangarajMRangayyan, "Biomedical Signal Analysis" A case study approach, John Wiley publications.

Reference Books:
1. R E Chellis and R I Kitney, "Biomedical Signal Processing", in IV parts, Medical and Biological Engg. And current computing, 1990-91.
Prerequisites
Microprocessor, Operating System

Course Objectives
1. Present brief idea about the embedded system components, memory, communication interfaces and other firmware components.
2. Prescribe the quality attributes, hardware and software co-design, computational models in embedded systems, unified modelling languages etc.
3. Present the firmware system development and firmware development languages.
4. Give a brief description of RTOS, integrated development environment, simulators and emulators.
5. Present the trends in embedded system development.

Course Outcomes
After completion of the course a student will be able to:
1. Describe the differences between the general computing system and the embedded system, also recognize the classification of embedded systems.(a,b,e,k)
2. Choose the model, architecture, language and hardware/software partitioning in hardware/software codesign.(b,c,d,f,)
3. Describe and identify embedded firmware.(b,d,e,f,k)

Course Content
Unit-1: Typical Embedded System [11]

Unit-2: Characteristics and Quality Attributes of Embedded Systems [10]

Operating System Basics, Types of OS, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Putting them altogether, Task Communication, Task Synchronization, Device Drivers, How to Choose an RTOS(Self Study/Case Study).
Unit-4: The Embedded System Development Environment

The Integrated Development Environment (IDE)(Self Study/Case Study), Types of Files Generated on Cross-compilation, Disassembler/Decompiler, Simulators, Emulators and Debugging, Target Hardware Debugging, Boundary Scan.

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>BTEC15F7340</th>
<th>Virtualization and Cloud Computing</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:

Computer Networks, Operating System

Course Objectives:

The objective of this course is to:
1. Provide knowledge in different layers of cloud computing, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS);
2. Illustrate the use of various cloud computing technologies;
3. Introduce Virtualization technologies: Hypervisor, emulation, and application VM; Platform virtualization, storage virtualization, and network virtualization;
4. Provide Introduction to cloud security and secure computation in the cloud.

Course Outcomes:

On successful completion of this course, the student is expected to be able to:

1. Explain virtualization and their role in elastic computing; (a, c, f)
2. Characterize the distinctions between Infrastructure, Platform and Software as a Service (IaaS, PaaS, SaaS) abstractions;(b, c, f)
3. Analyze the advantages and disadvantages of Public and Private Clouds.(a, e, f)
4. Create and deploy cloud applications (b, e, f)
5. Design Cloud security solutions (a, c, f)

Course Contents:

Unit-1: Cloud Computing Overview

Unit-2: Cloud architecture: Cloud delivery model

Unit-3: Virtualization

Unit-4: Centralized computing vs Pervasive computing

References:

SC 5

<table>
<thead>
<tr>
<th>BTEC15F7410</th>
<th>Satellite Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration : 14 Wks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Course Objectives
1. To provide an in-depth understanding of different concepts used in a satellite communication system.
2. To get knowledge of every aspects of satellite communication like orbital mechanics, launching techniques, satellite link design, earth station technology and different access system towards a satellite
3. To Understand Earth and space component.
4. To familiarize with different multiple access like TDMA FDMA and CDMA
5. To learn different communication networks.
6. To know application of satellite communication.

Course Outcomes
On completion of this course the student will be able to:
1. Describe the requirements for the following aspects of a satellite communications system: satellite subsystems, satellite orbits, frequency bands used, antennas and electromagnetic wave propagation for communications between earth stations and satellite (a, d)
2. Describe the systems required by a communication satellite to function efficiently, its trade-offs and also limitations encountered in the design of a communication satellite systems (a,d)
3. Describe the topologies and applications of analog and digital satellite communication networks (a, d, f)
4. Evaluate the advantages and disadvantages of the different types of satellite orbits (a, d, f)
5. Analyze the fundamentals of orbital mechanics, the characteristics of common orbits used by satellites and assess launch methods and technologies. (a,d,f)
6. Determine accurate link budget for a satellite communication link. (a,d,f)
7. Specify the specialized services of satellite. (a,d,f)
Course Contents

Unit-1: Satellite Systems and Orbits
Overview of satellite systems: Introduction, Frequency allocations for satellite systems.
Orbits and launching methods: Kepler’s three laws of planetary motion, terms used for earth orbiting satellites, orbital elements, apogee and perigee heights, orbit perturbations, inclined orbits, local mean solar point and sun-synchronous orbits, standard time.
The Geostationary orbit: Introduction, antenna look angles, polar mount antenna, limits of visibility, near geostationary orbits, earth eclipse of satellite, sun transit outage, launching orbits. Atmospheric losses

Unit-2: Space Segment & Earth Segment
The Space segment: Introduction, power supply, attitude control, station keeping, thermal control, TT&C subsystem, transponders, antenna subsystem.
The Earth segment: Introduction, receive-only home TV systems, master antenna TV system, Community antenna TV system, transmit-receive earth station.

Unit-3: Communication Satellite and Satellite link Design
Communication Satellites- Satellite subsystem; Attitude and orbit control system (AOCS); Telemetry, Tracking, Command and Monitoring (TTC&M); power systems; communications subsystem-description, transponders; satellite antennas-basic antenna types, satellite antennas in practice.
Satellite link design and Satellite access: Basic transmission theory, system noise temperature and G/T ratio; Downlink design-link budget; Uplink design; design for specified C/N, uplink and downlink attenuation in rain, communication link design procedure; system design examples.

Unit-4: Satellite Access Techniques and Application

Text books:

Reference Books:
Prerequisites

Course Objectives:
1. To provide a significant understanding of adaptive filters in signal processing.
2. To introduce the mathematical framework necessary in understanding the adaptive filtering process.
3. To present the perspectives of adaptive filters towards present day communication systems.
4. To study the differences between algorithms adopted in adaptive filtering.
5. To know the performance measures used in comparing different adaptive filtering algorithms.

Course Outcomes:
On completion of this course the student will be able to:
1. Define, describe and outline adaptive models used for various categories of signal processing problems.(a,b)
2. Associate the adaptive model under consideration, with a well known mathematical framework.(b,c)
3. Develop optimum solutions for the adaptive model and thereby compute the performance measures.(g,f)
4. Investigate the suitability of available adaptive algorithms for a given situation.(g,c,d)
5. Develop the iterative design procedure for practical realization of adaptive filter.(c,d)
6. Generalize the application of adaptive filters to many communication related signal processing problems.(b,c,d)

Course Contents

Unit-1: Adaptive systems
Definitions and characteristics, applications, properties and examples of adaptive linear combiner. Definitions of input signal and weight vectors, performance function-gradient and minimum mean square error, introduction to filtering, smoothing and prediction, performance surface.

Unit-2: Searching performance surface stability and rate of convergence
Learning curve, gradient search - Newton's method and method of steepest descent, comparison, gradient estimation, performance penalty: variance, excess MSE and time constants, misadjustments.
Unit- 3 LMS algorithm convergence of weight vector: [10]
LMS/Newton algorithm, properties, sequential regression algorithm, comparisons

Unit-4 Applications of adaptive filters: [11]
Multipath communication channel, geophysical exploration, FIR digital filter synthesis, inverse adaptive modeling, equalization, and deconvolution, adaptive equalization of telephone channels-adapting poles and zeros for IIR digital filter synthesis.

TEXT BOOKS:

REFERENCE BOOKS:

<table>
<thead>
<tr>
<th>BTEC15F7430</th>
<th>Web Programming</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
Programming using C

Course Objectives:
The objectives of this course are:
1. To provide students with conceptual and practical knowledge of web applications;
2. To impart skills required to develop web applications and services.
3. To introduce cascading styles.
4. To present Java Scripts.
5. To give a fundamental knowledge of Web Services

Course Outcomes:
On completion of this course, the student will be able to:
1. Identify tools and technologies for Web applications. (a, b)
2. Develop user-interfaces for Web Applications. (b, d)
3. Describe and transform data using XML and its related technologies. a, b)
4. Developing Web applications and Web services. (b, d, f)

Course Content:

Unit-1: Computers and Internet [11]

Unit-2: Cascading Style Sheets [10]

Unit-3: JavaScript [11]
JavaScript: Introduction to Scripting, Control statements-1, Control statements-2, Functions, Arrays, Objects, Events and programming examples on each of these. Document Object Model (DOM): Introduction, Modeling a Document: DOM Nodes and Trees, Traversing and Modifying a DOM Tree, DOM Collections, Dynamic Styles, Summary of the DOM Objects and Collections.

Unit-4: PHP [10]
PHP: Introduction, PHP Basics, String Processing and Regular Expressions, Form Processing and Business Logic, Connecting to a Database Using Cookies, Dynamic Content, Operator Precedence Chart.

Text book:

Reference Books:
Prerequisites:

Knowledge of CMOS circuits, Basics of VLSI design

Course Objectives:

1. Highlight the importance of complex VLSI circuits.
2. List the examples of SoC systems
3. Introduce the parts of a SoC
4. Providing the comparison of different VLSI design styles
5. Introduce the concept of H/W and S/W co-design
6. Introduce the system design process
7. Highlight the differences between the hard IP and soft IP
8. Provide a sound knowledge of embedded memories
9. Demonstrate the idea of NoC used for interconnection architecture

Course Outcomes:

On completion of this course the student will be able to:
1. Describe the different VLSI design styles (a, b, c, d, e)
2. Explain the idea of SoC (a, b, c, d, e)
3. Summarize the SoC design steps (a, b, c, d, e)
4. Integrate the H/W and S/W design for designing a SoC chip (a, b, c, d, e)
5. Asses different types of memories to be used as embedded memories. (a, f)
6. Apply the concept NoC for SoC interconnections (a, b, c, d, e)

Course contents:

Unit-1: Motivation for SoC and SoC design: [11]
Review of Moore’s law and the state of art of VLSI. Meaning of SoC. Benefits of SoC integration in terms of cost, power and performance. Comparison of system on board, system on chip and system in package. Typical goals of SoC design- cost reduction, power reduction, design effort reduction, enhancement of performance. Productivity gap issues and the ways to reduce the gap-IP based design and design reuse.
Unit-2: SoC Design: [10]

Unit-3: Embedded Memories [10]
Types of memories. Cache memories, flash memories, Embedded DRAM. Cache coherence. MESI protocol and Directory –based coherence .MPSoCs, Techniques to design MPSoCs, Performance and flexibility for MPSoC Design

Unit-4: Interconnect architectures for SoC: [11]
Bus architecture and its limitations. Concept of NoC. NoC topologies. Advantages of NoC. Mesh based NoC. Routing ina NoC. Packet switching and wormhole routing.

References:

<table>
<thead>
<tr>
<th>BTEC15F7450</th>
<th>Real Time Systems</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:
Embedded System

Course Objectives:
1. Understand and Analyze Real Time Systems
2. Know the Importance of real time constraints and synchronization issues.
3. Introduce concepts of RTOS and resource management
4. Achieve multitasking and concurrency
5. Present RTOS tools and case studies
Course Outcomes:
On completion of this course the students will be able to:
1. Understand the basics and importance of real-time systems. (a,b)
2. Generate a high-level analysis document based on requirements specifications (a,b,c,d)
3. Generate a high-level design document based on analysis documentation (a,b,c,d)
4. Generate a test plan based on requirements specification (a,b,c,d,e)
5. Generate a validation plan based on all documentation (a,b,c,d,e)
6. Understand basic multi-task scheduling algorithms for periodic, aperiodic, and sporadic tasks as well as understand the impact of the latter two on scheduling (a,b,c)
7. Understand capabilities of at least one commercial off-the-shelf R-T kernel (a,b,c)
8. Participate in a team design project, utilizing varying skill sets of members. (a,b,d,e,k)

Course Contents:
Unit-1: Introduction to Real Time Systems: [10]
Basic Real-Time Concepts, Hardware Considerations, Clock Synchronization

Unit-2: Tasks and Task Scheduling: [11]
Task classes, Characterizing RTS and Tasks, Task assignment and Scheduling, Task management, Scheduler and Real-Time Clock Interrupt Handler

Unit-3: RTOS: [11]

Unit-4: RTOS Issues and Tools: [10]
Performance Metrics, Synchronization issues, Embedded Linux internals, RTOS Tools- mucos, VxWorks- case studies on these tools, POSIX Thread Programming.

Reference Books:
SC-6

<table>
<thead>
<tr>
<th>BTEC15F7510</th>
<th>ASIC DESIGN</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
Digital Electronic Circuits

Course Objectives
1. Present brief idea about the ASIC design.
2. Give brief introduction to logic cell.
3. Present the idea of low level design entry.
4. Give a brief description of floor planning, placement and routing.
5. Present the trends in ASIC.

Course Outcomes
After completion of the course a student will be able to:
1. Describe the various logic cells and their utilization in system design. (a, b, e, k)
2. Design schematics and generate net list.(b, c, d, f)
3. Develop floor planning, placement and routing.(b, d, e, f, k)

Course contents:

Unit 1: Introduction
Full Custom ASICs, Standard Cell based ASICs, Gate array based ASICs, Channeled gate array, Channelless gate array, structured gate array, Programmable logic devices, FPGA, Design flow, Economics of ASICs, ASIC cell libraries, I/O cells, Cell Compilers.

Unit 2: ASIC Library Design and Design entry
ASIC Library Design: Logical effort: predicting delay, logical area and logical efficiency, logical paths, multistage cells, optimum delay, optimum number of stages, library cell design. Low-Level Design Entry: Schematic Entry: Hierarchical design. The cell library, Names, Schematic, Icons & Symbols, Nets, schematic entry for ASIC’S, connections, vectored instances and buses, Edit in place, Attributes, Netlist screener, Back annotation.

Unit 3: ASIC Construction Floor Planning
Physical Design, CAD Tools, System Partitioning, Estimating ASIC size, partitioning methods. Floor planning tools, I/O and power planning, clock planning
Unit 4: Placement and Routing

Placement algorithms, iterative placement improvement, Time driven placement methods. Physical Design flow, global Routing, Detail Routing, Special Routing, Circuit Extraction and DRC.

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>BTEC15F7520</th>
<th>Digital Signal Compression</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites

Digital Signal Processing

Course Objectives

1. Describe Compression techniques.
2. Discuss the elementary techniques used for modeling of data.
3. Summarize the issues relating to modeling, distortion criteria, differential Entropy, rate Distortion Theory.
4. Illustrate the Vector Spaces, Present Information theory,
5. Organize the models for sources.
6. Distinguish Contrast Coding, uniquely decodable codes, Prefix codes.
7. Explain the Kraft McMillan Inequality.

Course Outcomes

1. Explain various digital data compression techniques.(a, b)
2. Summarize the important issues in data compression.(b,c,d)
3. Explain the techniques for compression of binary programmes, data, sound and image and video. (e,c,d)
4. Explain Lossless Coding for the units of coverage. (f, e)
5. Apply the knowledge of compression in engineering design and analysis. (c, d)

Course contents:

Unit-1: Introduction
Introduction: Compression techniques, lossless compression, lossy compression, measures of performance.

Unit-2: Mathematical preliminaries for lossless compression
Overview, a brief introduction to information theory, derivation of average information, physical models, probability models, Markov models, composite source model, uniquely decodable codes, prefix codes, Kraft-McMillan inequality

Unit-3: Huffman coding
Overview, The Huffman Coding Algorithm, Minimum variance Huffman codes, optimality of Huffman codes.

Unit-4: Transform coding
K-L Transform, DCT, DST, Discrete Walsh-Hadamard Transform.

TEXT BOOKS:

REFERENCE BOOKS:

<table>
<thead>
<tr>
<th>BTEC15F7530</th>
<th>Parallel processing</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites:

Computer fundamentals, Computer architecture
Course Objectives:

1. To present design of parallel programs and how to evaluate their execution
2. To give knowledge of the characteristics, the benefits and the limitations of parallel systems and distributed infrastructures
3. To expose students to writing code in different parallel programming environments
4. Encourage students to build experience with interdisciplinary teamwork

Course Outcomes:

On completion of this course the student will be able to:

1. Analyze the requirements for programming parallel and critically evaluate the strengths and weaknesses of parallel programming models and how they can be used to facilitate the programming of concurrent systems. (b, d)
2. Discuss the difference between the major classes of parallel processing systems and design software solutions for a number of parallel processing models. (a, b)
3. Design and implement a SIMD and MIMD parallel processing solution. (b, f, g)
4. Analyze the efficiency of a parallel processing system and evaluate the types of application for which parallel programming is useful. (b, d)
5. Reason about ways to parallelize a problem and evaluate a parallel platform for a given problem. (a, b)

Course Content:

Unit-1: Introduction and Architectures [10]

Unit-2: instruction level parallelism [10]
ILP: Concepts and challenges; Basic Compiler Techniques for exposing ILP; Reducing Branch costs with prediction; Overcoming Data hazards with Dynamic scheduling; Hardware-based speculation, Exploiting ILP using multiple issue and static scheduling; Exploiting ILP using dynamic scheduling.

Unit-3: Shared memory programming and UNIX [11]
Unit 4: Review of memory hierarchy and Memory hierarchy design [10]
Introduction, Cache performance, Cache Optimizations, Memory technology and optimizations, Protection: Virtual memory and virtual machines, Exploiting Instruction-Level Parallelism Statically, The Intel IA-64 Architecture and Itanium Processor

Text Books:

Reference Books:
1. **UNIX and Shell Programming** Behrouz A. Forouzan and Richard F. Gilberg:, Cengage Learning
2. **Advanced Computer Architecture Parallelism, Scalability** – Kai Hwang:, Programability, Tata Mc Grawhill

<table>
<thead>
<tr>
<th>BTEC15F7540</th>
<th>Pervasive and Ubiquitous Computing</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:
Basics of computing and networking

Course Objectives:
The objectives of this course are to:

1. To Provide a sound conceptual foundation in the area of Pervasive Computing aspects;
2. To Provide a balanced treatment of the mechanisms and environments of ubiquitous computing;
3. To give an insight into successful mobile and pervasive computing applications and services.
4. To Provide an insight into characteristics of Explicit and Implicit Human-Computer Interface (HCI)
5. To Introduce to the architectures of Intelligent Systems.

Course Outcomes:
On successful completion of this course, the student is expected to be able to:
1. Describe the Smart Device, Environment and Interfaces (DEI) model of Ubiquitous Computing Systems. (b, d, f)
2. Identify various devices used in Human Computer Interaction. (b, e)
3. Compare the usability of alternative design of interactions for specific ubiquitous computing systems. (a, b)
4. Describe the role of Sensors and MEMS in development of Context Aware Systems. (b,d,f)
5. Design and implement simple context aware applications, using standard sensor technology. (b, d, f)
6. Differentiate various Intelligent System (b. e)

Course Contents:

Unit-1: Ubiquitous Computing [10]

Introduction, User Interfaces and Interaction for Four Widely Used Devices, Hidden UI Via Basic Smart Devices, Hidden UI Via Wearable and Implanted Devices, Human-Centred Design (HCD), User Models: Acquisition and Representation, iHCI Design

Unit-3: Tagging, Sensing and Controlling [11]

Unit-4: Intelligent Systems (IS) [10]

Text Books:
Reference books

<table>
<thead>
<tr>
<th>BTEC15F7700</th>
<th>Computer Communication Networks Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration : 14 Wks</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites:
C/C++ programming, Network configurations, Network Parameters, Transmission characteristics.

Course Objectives
The objectives of this course are to:
1. Introduce the open source network simulators.
2. Discuss the Network topologies, Point to point Network on NS platform.
3. Conceptualize the Transport Protocols (TCP/UDP), SMTP, SNMP, FTP, HTTP, TELNET, HTML etc.
4. Discuss the C/C++ Programming
5. Conceptualize the factors such as security, error detection & correction methods of data.
6. Discuss the data transmission and loss of data packets in a network.

Course Outcomes
After completion of this course, the students would be able to,
1. Generalise the open source network simulator on windows/Linux platform. (a,g)
2. Construct a network model for given configurations and establish a reliable connection by varying their factors such as transmission speeds (bandwidth), bit rate etc. (a,b,e,g)
3. Apply relevant application to a network that makes a network more efficient, faster, more secure, easier to use, able to transmit several simultaneous messages, and able to interconnect with other networks. (a,b,e,g)
4. Generalise the C/C++ Programming on windows/Linux platform. (a,g)
5. Apply various Encryption/Decryption techniques, Error detection & correction methods for given message data to establish a reliable data transmission. (a,b,e,g)
6. Demonstrate working principle of various shortest path algorithms. (a,b,e,g)
Course Contents:

PART A – Simulation Exercises
1. Create a three node network topology and connect the duplex links between them.
2. Simulate a four node point-to-point network, and connect the links as follows: n0-n2, n1-n2 and n2-n3. Apply TCP agent between n0-n3, n1-n3. Apply relevant applications over TCP agents by changing the parameters and hence determine the number of packets transmitted.
3. Simulate a four node point-to-point network, and connect the links as follows: n0-n2, n1-n2 and n2-n3. Apply UDP agent between n0-n3, n1-n3. Apply relevant applications over UDP agents by changing the parameters and hence determine the number of packets transmitted.
4. Simulate a three nodes point-to-point network and connect the duplex links between them. Set the queue size, vary the transmission speeds (bandwidth) and find the number of packets dropped.
5. Simulate an Ethernet LAN using N-nodes (6-10) with UDP/TCP connection. Apply relevant applications over UDP/TCP agents by changing the parameters and hence determine the number of packets transmitted.

PART B
The following experiments shall be conducted using C/C++.
1. Write a program for bit stuffing & de-stuffing using HDLC
2. Write a program for character stuffing & de-stuffing using HDLC
3. Perform the Encryption and decryption of a given message using substitution method
4. Perform the Encryption and decryption of a given message using transposition method
5. Write a program for error detecting code using CRC-CCITT (16-bits).
6. Write a program to find minimum spanning tree of a subset
7. Write a program to find the shortest path for a given network.

Simulator:
Any of the following simulators can be used.
1. NS2 Simulator (http://www.isi.edu/nsnam/ns/)
2. NS3 Simulator (https://www.nsnam.org/)
3. NCTUns (http://csie.nqu.edu.tw/smallko/nctuns/nctuns.htm)
4. BOSON simulator (http://www.boson.com/)

<table>
<thead>
<tr>
<th>BTEC15F7800</th>
<th>Embedded System Design Lab</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14Wks</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites
Embedded System Design theoretical aspects
Microcontroller & C language programming skills

Course Objectives
At the end of the course the student should be able to

1. To understand and implement the concepts of embedded system
2. To write the programs on threads, process individually and execute them.

Course Outcomes

After completion of the course a student will be able to:

1. To understand the firmware system development and firmware development languages.(a,b,e,g)
2. Give a brief description of RTOS, Integrated Development Environment, Simulators and Emulators(a,b,e,g,k)
3. To understand the trends in embedded system development(a,b,e,g,k)

Course Content

Program 1: Write a program for Thread Creation and Termination

Program 2: Create independent threads each of which will execute some function and wait till threads are complete before main continues. Unless we wait run the risk of executing an exit which will terminate the process and all threads before the threads have completed.

Program 3: Create the N number of threads and find the how many threads are executed.

Program 4: Create threads numbers 1-3 and 8-10 as permitted by functionCount1 and create threads number 4-7 as permitted by functionCount2 and print final count value.

Program 5: Design develop and execute a program using any thread library to create the number of thread specified by the user, each thread independently generates a random integer as an upper limit and then computes and prints the number of primes less than or equal to that upper limit, along with that upper limit.

Program 6: Rewrite above program (Program 5) such that the processes instead of thread are created and the number of child processes created is fixed as two. The program should make use of kernel timer to measure and print the real time, processor time, User space time and kernel space time for each process.

Program 7: Design, develop and implement a process with a producer thread and a consumer thread which make use of a bounded buffer (Size can be prefixed at suitable value) for communication. Use any suitable synchronization construct.

Program 8: Design develop and execute a program to solve a system of n liner equations using successive over-relaxation method and n processes which use shared memory API

NOTE: Mini project using any embedded controller

REFERENCE BOOKS:

Open Electives

BTEC15F7610

Robotics and Automation

Duration :14Wks

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites
Microcontrollers, Programming skills and Mathematics fundamentals

Course Objectives
At the end of the course the student should be able to

1. Classify Robots and anatomy.
2. Actuators and Kinematics.
3. Sensors and vision systems used in robots.

Course Outcomes
After completion of the course a student will be able to:

1. Summarize the basic applications and advantages of using robots in the industry.(a,b,c,d)
2. Do the robot motion analysis. (a,b,c)
3. Relate mathematical modeling in robots. (a,b,c,d)
4. Recognize the different types of sensors and cameras used in the field of robotics. (a,b,c,d)
5. Write robot programs (a,b,c,d,e,f)

Course Content

Unit-1: Introduction of Robotics

Unit- 2: Sensors
systems: Introduction – Image processing Vs image analysis, image Acquisition, digital Images – Sampling and Quantization – Image definition, levels of Computation.

Unit- 3: Actuators and Kinematics [11]

Unit- 4 : Robot Programming [10]
Methods of Robot programming, A robot program as a path in space, methods of defining positions in space, motion interpolation, wait, signal and delay commands, branching, Robotic languages, constants variables and other data objects, motion command send effectors and sensor commands, program control and subroutines

TEXT BOOK:

REFERENCE BOOKS:

<table>
<thead>
<tr>
<th>BTEC15F7620</th>
<th>Neural Networks and Fuzzy logic</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :16 Wks</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites
Set theory, Calculus, Boolean algebra, Linear Algebra.

Course Objectives
1. To introduce the basics of Neural Networks and essentials of Artificial Neural Networks
2. To illustrate the essentials of Single Layer and Multilayer Feed Forward Networks and to deal
with Associate Memories and algorithms.
3. To introduce Fuzzy sets and Fuzzy Logic system components.
4. To discuss Neural Network and Fuzzy Network system applications to Electrical, Electronics and Communication Engineering.

Course Outcomes

After completion of this course, the students shall be able to

1. Describe the basic concepts of neural networks in terms of various models. (a,b,c)
2. Understand neuron activation functions and neuron dynamics and learning rules. (a,b,c,d)
3. Demonstrate various perceptron models in single layer and multilayer feed forward neural networks. (a,b,c,d)
4. Illustrate associative memory learning algorithms. (a,b,c,d)

Course Content

Unit – I: Introduction to Artificial Neural Networks

Introduction, Humans and Computers, Organization of the Brain, Historical Development of Neural Networks, Biological Neural Networks, Comparison between Brain and Computer. Comparison between Artificial and Biological Neural Network. Basic building Blocks of ANN: Network Architecture, Setting the weights, Activation Function. ANN Terminologies.

Unit–II: Perceptron Networks and Associative Memory Networks

UNIT III: Back Propagation Network and Applications of Neural Networks

Introduction, Back Propagation Network (BPN): Generalized Delta Learning Rule, Architecture, Training algorithm, Selection Parameters, Learning in Back Propagation, Application Algorithm, Local Minima and Global Minima. Merits and Demerits of BPN Applications: Any Two applications of Neural network applications such as a non linear mathematical expression, Pattern Recognition, fault diagnosis and Mackey Glass time series.

Unit – IV: Introduction to Fuzzy Sets and Systems

Classical & Fuzzy Sets Introduction to classical sets - properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, properties, fuzzy relations, cardinalities, membership functions.
Fuzzy Logic System Components: Fuzzification, Membership value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods.

Text Books:

1. Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications by Rajasekharan and Rai – PHI Publication.
2. Introduction to Neural Networks using MATLAB 6.0 - S.N.Sivanandam, S.Sumathi, S.N.Deepa, TMH

References books:

<table>
<thead>
<tr>
<th>BTEC15F7630</th>
<th>MEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration: 14 Wks</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites

Engineering Physics, Upper Division standing in Engineering, Chemistry or Chemical Engineering and Material Science, VLSI Technology, Elements of Mechanical Engineering.

Course Objectives

1. Introduce the basic three pillars of MEMS Design, Fabrication and Materials.
2. To introduce different materials used for MEMS.
3. To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
4. Highlight the various electrical and mechanical concepts with regards to MEMS arena.
5. Demonstrate the various fabrication and micro machining techniques.
6. Recognize the basic operation principles Optical Lithography, Electron Lithography, X-Ray Lithography, Ion Lithography, Plasma properties.
7. Understand Etch mechanism, reactive Plasma Etching techniques and Equipment.
8. To introduce various sensors and actuators.

Course Outcomes

On completion of this course the student will be able to:

1. Differentiate between micro systems, MEMS and NEMS.(a,b,c,d,e,f)
2. Assess the various electro-mechanical properties of materials used for MEMS design. (a,b,c,d,e,f)
3. Describe the various steps involved in the MEMS fabrication. (a,b,c,d,e,f)
4. Understand the chemical and physical vapor processes; heteroepitaxy and defects; substrates and substrate engineering. (a,b,c,d,e,f)
5. Convey knowledge of advanced concepts of lithography and etching. (a,b,c,d,e,f)
6. Understand electrostatic, thermal, piezoelectric and magnetic actuators at micro scale.
7. Understand the applications of MEMS. (a,b,c,d,e,f)
8. Understand device fabrication fundamentals: diffusion, ion implantation. (a,b,c,d,e,f)
9. Understand the concept of design of metallization. (a,b,c,d,e,f)

Course Content

Unit-1: Introduction to MEMS
Materials for MEMS: Silicon compatible material System-Silicon, Czochralski Crystal Growing, Silicon oxide and Nitride, Thin metal Films, Polymers, Other material and substrates, Important materials properties and Physical effects.

Unit-2: Microsystems Fabrication Process:
Introduction, Photolithography, Ion-implantation, diffusion, oxidation, CVD, PVD, etching and materials used for MEMS, Some MEMS fabrication processes: surface micro-machining, bulk micromachining, LIGA process, LASER micro machining, MUMPS, FAB-less fabrication.

Unit-3: Microsystems Design and Packaging:
Assembly, Packaging, and Testing (APT) of Microsystems, Microsystem Packaging, overview of Mechanical Packaging of Microelectronics, interfaces in Microsystem Packaging, Essential Packaging Technologies, Three Dimensional Packaging, Assembly of Microsystems, Selection of Packaging Materials.

Unit-4: Applications:
Case studies – silicon capacitive accelerometer, piezo-resistive pressure sensor, blood analyzer, conduct metric gas sensor, silicon micro-mirror arrays, piezo-electric based inkjet print head, electrostatic comb-drive and magnetic micro relay, portable clinical analyzer, active noise control in a helicopter cabin.
Text Books:

Detailed Syllabus

Semester VIII

<table>
<thead>
<tr>
<th>BTEC15F8100</th>
<th>Wireless Communication and Networking</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
Fourier analysis, Linear Systems, Probability Theory, Introductory Modulation and Antenna Theory

Course Objectives
The student should be made to:
1. Know the characteristic of wireless channel
2. Understand the concepts behind various digital signaling schemes for fading channels
3. Understand the various multipath mitigation techniques
4. Understand Wireless Networks
5. Understand Wireless LAN and Bluetooth Technology

Course Outcomes
On completion of this course the student will be able to:
1. Characterize wireless channels (a, b)
2. Design and implement various signaling schemes for fading channels (a, b, d, e)
3. Compare multipath mitigation techniques and analyze their performance (a, b, d)
4. Compare various types of wireless networks (a, b, d)
5.
Course Content

Unit-1: Wireless Channels

Unit-2: Multipath Mitigation Techniques

Equalization – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macro diversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver.

Unit-3: Satellite Networks and Wireless Application Protocol

Unit-4: Wireless LAN and Bluetooth Technology

Wireless LAN Technology: Infrared LANs, spread spectrum LANs, Narrowband Microwave LANs, Wi-Fi- and the IEEE 802.11 Wireless LAN standard: IEEE 802 architecture, IEEE 802.11 Architecture and services, Medium access control, Physical layer, other IEEE 802 standards, Wi-Fi protected access, Bluetooth and IEEE 802.15: Radio specification, Baseband specification, Link manager specification

Text Books:

References:

SC-7

BTEC15F8210 | Mobile Adhoc and Sensor Networks | L | T | P | C
| Duration :14 Wks. | | 3 | 1 | 0 | 4 |

Prerequisites:
Wireless communication, computer network, data communication

Course Objective:
The student should be made to:

1. Know the characteristic of Adhoc networks
2. Understand the concepts routing protocols
3. Understand the security issues in Adhoc networks
4. Understand MAC protocols for Sensor Networks

Course Outcomes:
On successful completion of this course, the student should be able to:

1. Characterize Adhoc Networks (a, b)
2. Explain the concepts of Adhoc networks and sensor networks (a, b)
3. Compare routing protocols of Adhoc networks (a, b, d)
4. Compare various data dissemination methods (a, b, d)

Course Content

Unit-1: Adhoc Networks

Unit-2: Routing Protocols for Ad Hoc Wireless Networks

Unit- 3: Sensor networks

Sensor networks: Applications, Comparison with Adhoc Wireless Networks, Sensor network architecture: Layered and clustered architecture, Data dissemination, Data gathering: Power efficient gathering,

Unit-4 : MAC protocols for Sensor Networks

MAC protocols for Sensor Networks: Self organizing MAC, Hybrid TDMA/FDMA, and CSMA based MAC protocols, Location Discovery: Indoor localization, Sensor network localization, Quality of Sensor Networks: Coverage and exposure, Evolving standards and other issues

Text Book

Reference Books

<table>
<thead>
<tr>
<th>BTEC15F8220</th>
<th>Real Time DSP</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks.</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites:

Course Objective:

1. Explain and give Overview of Real-time and Embedded Systems.
2. Discuss the embedded system lifecycle using DSP.
3. Summarize FPGA solutions.
4. Compare Programmable DSP Architectures.
5. Design of FPGA in Wireless Communications Applications.
6. Discuss the DSP Hardware/Software Continuum.

Course Outcomes:
7. Describe and give a overview of DSP Algorithms.(a,b,c)
8. Classify High-level Design Tools for Complex DSP Applications.(b,c,e)
9. Analyze Optimizing DSP Software e High-level Languages and Programming Models.(e,f)
10. Categorise Optimizing DSP Software e Code Optimization.(e,f)
11. Ascertain Software Optimization for Power Consumption.(b,f)
12. Summarize DSP Operating Systems.(e,f)
13. Interpret Managing the DSP Software Development Effort.(e,g)
14. Recall Multicore Software Development for DSP Developing and Debugging a DSP Application.(e,f)

Course Content

Unit-1: Introduction to TMS320C55x Digital Signal Processor: [11]

- **Introduction to RTDSP:** Basic elements of Real-Time DSP systems, Input & output channels, DSP Hardware, DSP system design.
- **Introduction to TMS320C55x Digital Signal Processor:** TMS320C55x Architecture, TMS320C55x Addressing Modes, TMS320C55x Instruction Set.

Unit-2: DSP fundamentals & Implementation Considerations [10]

- Digital Signals and Systems, Introduction to Digital filters, Fixed-Point Representation & Arithmetic, Quantization Errors, Overflow and Solutions, Implementation procedure for Real-time applications, Program Examples.

Unit-3: Fast Fourier Transform & Implementation [11]

Unit-4 : Design and Implementation of FIR Filter [10]

- Introduction to FIR Filters, Design of FIR Filter, Implementation Considerations, Applications: Interpolation and Decimation Filters, Experiments and Program Examples.

Text Books:

Reference Books:

Prerequisites
Engineering Physics, VLSI Technology, Chemistry or Chemical Engineering and Material Science, Elements of Mechanical Engineering.

Course Objectives
1. Introduce the basic three pillars of MEMS Design, Fabrication and Materials.
2. To introduce different materials used for MEMS.
3. To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices
4. Highlight the various electrical and mechanical concepts with regards to MEMS arena.
5. Demonstrate the various fabrication and micro machining techniques.
6. Recognize the basic operation principles Optical Lithography, Electron Lithography, X-Ray Lithography, Ion Lithography, Plasma properties.
7. Understand Etch mechanism, reactive Plasma Etching techniques and Equipment.

Course Outcomes
On completion of this course the student will be able to:
1. Differentiate between micro systems, MEMS and NEMS(a,b,c,d).
2. Assess the various electro-mechanical properties of materials used for MEMS design.(a,b,c)
3. Describe the various steps involved in the MEMS fabrication(a,b,c).
4. Understand the chemical and physical vapor processes; heteroepitaxy and defects; substrates and substrate engineering.(a,b,c,d)
5. Convey knowledge of advanced concepts of lithography and etching.(a,b,c,d)
6. Understand device fabrication fundamentals: diffusion, ion implantation(a,b,c)
7. Understand the concept of design of metallization.(a,b,c,d)

Course Content

Unit-1: Introduction to MEMS [11]
Materials for MEMS: Silicon compatible material System-Silicon, Silicon oxide and Nitride, Thin metal Films, Polymers, Other material and substrates, Important materials properties and Physical effects.
Unit-2: Crystal Growth and Wafer Preparation: [10]
Introduction, Electronic-Grade Silicon, Czochralski Crystal Growing, Silicon Shaping, Process Considerations.

Unit-3: Microsystems Fabrication Process: [10]
Introduction, Photolithography, Ion-implantation, diffusion, oxidation, CVD, PVD, etching and materials used for MEMS, Some MEMS fabrication processes: surface micro-machining, bulk micromachining, LIGA process, LASER micro machining, MUMPS, FAB-less fabrication.

Unit-4: Microsystems Design and Packaging: [11]
Microsystem Packaging, overview of Mechanical Packaging of Microelectronics, interfaces in Microsystem Packaging, Essential Packaging Technologies, Three Dimensional Packaging, Assembly of Microsystems, Selection of Packaging Materials.

VLSI Process Integration: Introduction, Fundamental Considerations for IC Processing, NMOS IC technology, CMOS IC Technology, MOS Memory IC Technology, Bipolar IC Technology, IC Fabrication.

Text Books:

<table>
<thead>
<tr>
<th>BTEC15F8240</th>
<th>Device Driver Programming</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites
Operating system, Embedded system
Course Objectives:

1. Understand the essentials of Linux device drivers.
2. Know practical experience in developing Linux device drivers.
3. Understand and develop device drivers for character devices, block devices and network devices.

Course Outcomes:

On completion of this course the students will be able to:

1. Design and describe the embedded Linux Kernel, Device Driver and Device Driver Modules. (a, c, f)
2. Innovate design, analysis and Implementation to hardware interfacing of embedded systems for Linux or Android platforms will be discussed. (b, d, f)
3. Implement race condition and concurrent programming. (c, e, f)

Course Content

Unit-1: Introduction

Linux essentials, Building the Kernel, Loadable Modules, Kernel Mode and User Mode, Process Context and Interrupt Context, Kernel Timers, Concurrency in the Kernel, Process Filesystem, Allocating Memory, Kernel Threads, Introducing Devices and Drivers, Interrupt Handling, The Linux Device Model, Memory Barriers

Unit-2: Character Drivers

Character Drivers; Char Driver Basics, Device Example: System CMOS, Sensing Data Availability, Talking to the Parallel Port, RTC Subsystem, Pseudo Char Drivers, Misc Drivers, Character Caveats

Unit 3: Communication Interface Drivers

Serial Drivers, UART Drivers, TTY Drivers, Input Drivers, Input Event Drivers, Input Device Drivers, Universal Serial Bus, USB Architecture, Linux-USB Subsystem, Driver Data Structures, Enumeration Device Example: Telemetry Card, Class Drivers, Gadget Drivers, Debugging Video Drivers, audio drivers.

Unit 4: Block Drivers

Network driver: Ethernet, Asynchronous Transfer Mode, Network Throughput, Debugging Device Drivers, Kernel Debuggers, Kernel Probes, Kexec and Kdump, Profiling, Tracing
Text book:

Reference Books:

<table>
<thead>
<tr>
<th>BTEC15F8250</th>
<th>Grid Computing</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration : 14Wks</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites
Programming with C C++, JAVA, DBMS, OS

Course Objectives:

The objectives of this course are to:
1. Be providing with an overview of the basic concepts of Grid Computing.
2. Provide an understanding of the need for and evolution of Grids in the context of processor- and data-intensive applications;
3. Become familiar with the fundamental components of Grid environments, such as authentication, authorization, resource access, and resource discovery.

Course Outcomes:

On successful completion of this course, the student is expected to be able to:
1. Design and implement Grid computing applications using Globus or similar toolkits. (a, b)
2. Justify the applicability, or non-applicability, of Grid technologies for a specific application. (a)
3. Explain programming toolkits such as Parallel Virtual Machine and Message Passing. (b, d)

Course Contents:

Unit-1: Overview of Grid Computing [11]
Introduction and Architecture: Introduction – Past; Present and Future Applications of grid computing organizations and their roles; Grid Computing anatomy ; Next generation of Grid computing initiatives; Merging the Grid services architecture with Web services architecture

Unit-2: Grid Computing Technologies [10]
OGSA; Sample use cases that drive the OGSA platform components; OGSA Basic Services – Security standards for grid computing
Unit-3: Grid Computing Tool Kit
Globus Toolkit; Versions; Architecture; High Level Grid Services

Unit-4: Interface Standards
Message Passing Interface (MPI) Standard: Overview; Procedures and Arguments; Data Types, Processes; Error Handling; Platform independence; Point-to-Point Communication; Collective Communication, Groups; Contexts Communicators;

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>BTEC15F8260</th>
<th>Multimedia Communications and Networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite:
Signal representation, Quantization techniques, Coding theory, OSI Reference model

Course Objectives:
1. To provide an understanding of impact of multimedia techniques in the day to day life.
2. To provide an understanding of various representations of graphics, image & video.
3. To provide an understanding of the total processing, storing and communication of multimedia data.
4. To provide a comprehensive understanding of multimedia communication over wireless networks.

Course Outcomes:
On completion of this course, the student shall be able to:
1. Understand the different representations of graphics, image and vide data types in multimedia. (a, e,k)
2. Compare the various industry standard compression techniques for digital audio. (g)
3. Understand the processing and storage techniques for video. (k)
4. Compare various industry standard compression techniques for effective bandwidth utilization of the media and also storage capacity. (d, e)
5. Determine impact of multimedia communication techniques in the wireless networks. (h, I, j, k)
Course Contents:

Unit-1: Graphics, Image & Video Representation

Graphics/Image data types, popular file formats, Color science – camera systems, XYZ to RGB transform, Color models in video, Fundamental concepts in video

Unit-2: Digital Audio & Compression Algorithms

Digitization of sound, MIDI, Quantization & transmission of audio

Lossless compression: Basics of information theory, RLC, VLC – Shannon Fano, Huffman, LZW, Arithmetic Coding

Lossy compression: Distortion measures, rate distortion theory, quantization, transform coding.

Unit-3: JPEG & MPEG

JPEG Standard, Video compression based on motion compensation, Search for motion vectors, H.261, H.263, MPEG-1, MPEG-2, MPEG-4, MPEG-7, MPEG-21

Unit-4: Multimedia Communication

Quality of multimedia transmission, Multimedia over IP, Media on demand, Multimedia over wireless network, C-Bird Case Study

Text Book:

Reference Book:

SC-8

<table>
<thead>
<tr>
<th>BTEC15F8310</th>
<th>Analog and Mixed Mode VLSI</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration:14Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:

Analog Electronic Circuit Design, Digital Electronic Circuit Design, CMOSVLSI
Course Objectives:

1. Introduce the concept of analog and digital discrete signals.
2. Provide specifications of data converters.
3. Highlight the DAC and ADC architectures.
4. Introduce non linear analog circuits like comparators, and analog multipliers.
5. Demonstrate the sub micron CMOS process flow.
6. Present capacitors, resistors and switches using MOSFETs.

Course Outcomes:

On completion of this course the student will be able to:

1. Describe sample and hold circuits. (a, b, c, d, e)
2. Compare analog and digital signals. (a, b, c, d, e)
3. List DAC and ADC specifications. (a, b, c, d, e)
4. Design R-2R ladder for given specifications. (a, b, c, d, e, f)
5. Differentiate Current Steering and charge scaling DACs and SAR ADC. (a, b, c, d, e)
6. Analyze analog multipliers. (a, b, c, d, e, f)
7. Assess the different MOSFET biasing circuits. (a, b, c, d, e, f)

Course Contents:

Unit-1: Data Converter Fundamentals

Data converter fundamentals: Introduction to Analog design, Analog versus Digital, Discrete Time Signals, Converting Analog Signals to Data Signals, Front end signal conditioner circuit, Sample and Hold Characteristics, DAC Specifications, ADC Specifications, Mixed-Signal Layout Issues.

Unit-2: Data Converter Architectures

DAC Architectures, Digital Input Code, Resistors String, R-2R Ladder Networks, Current Steering, Charge Scaling DACs, Cyclic DAC, Pipeline DAC. ADC Architectures, Flash, 2-Step Flash ADC, Pipeline ADC, Integrating ADC, Successive Approximation ADC.

Unit-3: Non Linear Analog Circuits

Basic CMOS Comparator Design (Including characterization), Analog Multipliers, Multiplying Quad (excluding stimulation), Level Shifting (excluding input level shifting for multiplier). Op-Amp Design (Including noise circuits).
Unit-4: Sub-Micron CMOS Circuit Design

Process Flow, Introduction to triple gate MOSFETs, Capacitors and Resistors, MOSFET Switch (upto Bidirectional Switches), Delay and adder Elements, Analog Circuits, MOSFET Biasing (upto MOSFET Transition Frequency).

Text Books:

References:

<table>
<thead>
<tr>
<th>BTEC15F8320</th>
<th>Digital Audio and Video Broadcasting Systems</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration: 14Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:
Knowledge of computer networks. Network protocol, Probability and Random Process

Course Objective:
1. To understand the benefits of simulation and modeling in a range of important application areas.
2. To study simulation software to understand event-scheduling, Time-advance algorithm in computer networks.
3. To study the Essentials of Probability and Random Process
4. To understand Discrete Event Stochastic Models and Queuing Models
5. To learn the concepts of simulation for the various layers.

Course Outcomes:
On completion of this course the student will be able to:
1. Analyze the concepts of simulation for systems. (a,b,c)
2. Describe the role of important elements of simulation and modeling paradigm.(a,c,f)
3. Apply the mathematical techniques to model and analyze structural and dynamical properties of Discrete-Event systems.(a,b,c,e)
4. Describe Output analysis for discrete-event simulation algorithms. (a,b,c,d)
5. Implement and apply simulation on various layers for Optimization(a,d,f)

Course Contents:

Unit-1: Introduction of Digital Multimedia
Picture-Video-Television Transmission Standards, Analog Signal Formats-Digital Video Formats-Video Bit rate Reduction-Compression Standards-Compression MPEG

Unit-2: Audio and Video systems
Audio-Speech/Sound Encoding-Audio Compression Techniques-Audio File standards-Video File Formats—H.264/ (MPEG-$\$ PART-10)

Unit-3: Mobile TV
Mobile TV-What is Mobile TV-Difference between Terrestrial and Satellite TV-Standards for mobile TV-Resources for Delivering Mobile TV-New Growth Ares of Mobile TV

Unit-4: Technologies for Mobile TV

Text books:

<table>
<thead>
<tr>
<th>BTEC15F8330</th>
<th>Automotive Electronic Systems</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration : 14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
Embedded System Design
Microcontroller & Control systems
Course Objectives

At the end of the course the student should be able to

1. Explain power train and drive train components in automotive systems.
2. Discuss the role of electronics in engine control systems.
3. Illustrate the concepts of in-vehicle networking.
4. Describe automotive safety systems & infotainment systems.
 Analyze the current status of software in the automotive industry and present the specifications elaborated within the AUTOSAR consortium in terms of standardization

Course Outcomes

After completion of the course a student shall be able to:

1. Explain power train and drive train components in automotive systems.(a,b,c,d)
2. Discuss the role of electronics in engine control systems(d,e,f)
3. Illustrate the concepts of in-vehicle networking.(a,b,d,f)
4. Describe automotive safety systems & infotainment systems.(a,b,c,f)
 Analyze the current status of software in the automotive industry and present the specifications elaborated within the AUTOSAR consortium in terms of standardization

Course Content

Unit-1 Automotive Systems: [11]

Unit-2: Bus Architecture and Protocols [10]
Introduction to control networking, Review of SPI, I²C, USB, CAN, LIN, FLEXRAY, MOST, KWP200 Protocols.
Power train & Chassis Subsystem: Electronic fuel control in ignition systems, ABS, TCS, ESP, ECU’s, and Airbags.

Engine Speed Sensor, temperature sensor, Lambda sensor, Accelerometer (knock sensors), AUTOMOTIVE ENGINE CONTROL ACTUATORS, Solenoid actuator, Exhaust Gas Recirculation Actuator.
Automotive Diagnostics: On-board & Off-board diagnostics.

Unit-4: AUTOSAR Standard [10]
Motivation, AUTOSAR Architecture, Main Areas of AUTOSAR Standardization, AUTOSAR Models.
Text Books:

References:

<table>
<thead>
<tr>
<th>BTEC15F8340</th>
<th>Big Data Analytics</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:

Basics of data base management system

Course Objectives:

1. To provide an understanding of big data for business intelligence
2. Describes the main trends of Big Data concepts.
3. This course on big data and hadoop introduces key concepts of big data, to manage big data without SQL.
4. Understanding map-reduce analytics using hadoop and related tools.
5. Integrate Big Data components to create an appropriate Data Lake
6. Select the correct Big Data stores for disparate data sets
7. Process large data sets using Hadoop to extract value
8. Query large data sets in near real time with Pig and Hive
9. Plan and implement a Big Data strategy for your organization
Course Outcomes:

On completion of this course the student will be able to:

1. Master the concepts of HDFS and MapReduce framework. (a, b)
2. Understand Hadoop Architecture. (a, b)
3. Write Complex MapReduce programs. (b, d, f)
4. Perform data analytics using Pig, Hive. (d, f)
5. Implement best practices for Hadoop development. (b, d, f)

Course Contents:

Unit-1: Introduction to Big Data [11]
Classification of digital data, characteristics of data, evolution of big data, definition of big data, challenges with big data, what is big data, why big data, traditional business intelligence (BI) versus big data, A typical data warehouse environment, A typical hadoop environment, top challenges facing big data, why is big data analytics, what kind of technologies are we looking toward to help meet the challenges posed by big data?

Unit-2: Introduction to Hadoop [10]
Introducing Hadoop, why Hadoop, why not RDBMS, RDBMS versus Hadoop, History of Hadoop, Hadoop overview, use case of Hadoop, Hadoop distributors, HDFS, Processing data with Hadoop, NoSQL, Hadoop-Features of Hadoop.

Unit-3: MapReduce [11]
A weather dataset, Analyzing data with UNIX tools, Analyzing data with Hadoop, scaling out, How Map Reduce Works, Anatomy of a Map Reduce job run, shuffle and sort, job scheduling.

Unit-4: Hadoop Related Tools [10]
Introduction to PIG, What is PIG, The anatomy of PIG, PIG on Hadoop, PIG Latin, Data types in PIG, running PIG, Execution modes, HDFS Commands, Relational operators, PIG versus Hive, Introduction to HIVE, What is hive, hive architecture, hive data types, hive file formats, HQL, UDF.

Text Books:

References:

<table>
<thead>
<tr>
<th>BTEC15F8450</th>
<th>Cryptography and Network Security</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration :14 Wks</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
Basics of digital communication, computer communication

Course Objectives:
1. Explain the difference between cryptanalysis and brute force attack.
2. Explore the operation of substitution and transposition technique and DES. Present general structure of AES and 4 transformations.
3. Discuss basic principles of public key cryptosystems and familiarise with following algorithms: RSA, Diffie Hellman key exchange, Elgamal cryptographic system, Elliptic curve.
5. Explain issues involved in: public key distribution and analyze risks, asymmetric encryption to distribute symmetric keys, web security threats, overview of SSL, transport layer and HTTPS.

Course Outcomes
On completion of this course the student shall be able to:
1. Illustrate different types of substitution and transposition techniques.(a,b,c,d,e)
2. Acquire the block cipher knowledge using DES and AES. (a,b,c,d)
3. Describe different public key cryptosystems. (a,b,d,e)
4. Discuss various types of Hash functions and MACs. (a,b,c,d,e)
5. Illustrate different key management techniques. (a,b,c,d)
6. Describe transport layer security.

Course Content

Unit-1: Encryption Techniques & DES [11]
Security attacks and security mechanisms.
Encryption Techniques: Symmetric cipher model, Substitution techniques, Transposition techniques, Rotor machines, Steganography.
Data Encryption Standard (DES): DES encryption and decryption, Strength of DES, Block Cipher design principles.

Unit-2: AES and Public-Key Cryptography [10]
AES: Structure, transformation functions, key expansion.
Public-Key Cryptography: Principles of public key cryptosystems, RSA Algorithm, Diffie Hellman key exchange, Elgamal cryptographic system, Elliptic curve arithmetic.
Unit-3: Hash Functions, MACs and Digital Signature
Cryptographic Hash Functions: Two Simple Hash Functions, Hash function based on cipher block chaining, Message authentication requirements.
Message authentication functions: Requirements of MAC, Security of MACs, MAC based on hash functions: HMAC, Digital Signatures.

Unit-4: Key Management and Transport Layer Security
Key management: Symmetric key distribution using symmetric encryption, Symmetric key distribution using asymmetric encryption, distribution of public keys.
Transport-layer security: Web Security Considerations, Secure Sockets Layer, TLS, HTTPS.

Text Books:

Reference Books:
DO’S AND DON’TS

DO’S

1. Maintain discipline and respect the rules and regulations of the university
2. Be regular and punctual to classes
3. Study regularly and submit assignments on time
4. Be respectful to your Teaches/friends and hostel staff/management.
5. Read the notice board (both at your college and the hostel) regularly.
6. Utilize your Personal Computer for educational purpose only.
7. Follow the code of conduct.
8. Visit Health Center on the campus whenever you are unwell.
9. Be security conscious and take care of your valuables especially Cash, Mobile Phones, Laptop and other valuables.
10. Carry your valuables along with you whenever you proceed on leave/vacation.
11. Use electric appliances, lights and water optimally.
12. Keep the campus clean and hygienic.
13. Use decent dressing.

DON’TS

1. Ragging inside / outside the campus.
2. Possession of Fire arms and daggers etc.
3. Use of Alcohols, Toxic drugs, sheesha, gutkha and hashish/heroin etc.
4. Use of Crackers, explosives and ammunition etc.
5. Smoking and keeping any kind of such items.
6. Misusing college & hostel premises/facilities for activities other than studies.
7. Playing loud music in the room which may disturb studies of colleagues / neighbours.
8. Making noise and raising slogans.
9. Keeping electrical appliances, other than authorized ones.
10. Involvement in politics, ethnic, sectarian and other undesirable activities.
11. Proxy in any manner.
12. Use of mobiles in the academic areas.

Note: 1. Rules are revised / reviewed as and when required.
 2. Healthy suggestions are welcome for betterment of Institution.